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Outline
• The Scientific Method

Its eventual automation

• Models (that know nothing about protocols)
Chemical Reaction Networks

• Lab Protocols (that know nothing about models)
Digital Microfluidics

• Integration
Closed-loop modeling and protocol execution
The Kaemika App



An integrated language for
chemical models & 
experimental protocols
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Deterministic (ODE) and
stochastic (LNA) simulation

Chemical reaction networks (CRNs)
and liquid-handling protocols

Reaction scores

Functional scripting

GUI
Search "Kaemika" in the app stores
http://lucacardelli.name/kaemika.html



The Scientific Method

And its automation



The Scientific Method ~ 1638

1 Guy

Discovery through Observation

Garland, Jr., Theodore. "The Scientific Method as an Ongoing Process". U C Riverside.



The Scientific Method ~ 2000’s

1 Lab

1 protein = 30 people / 30 years

Humans have >250,000 proteins 

Discovery through Collaboration

Garland, Jr., Theodore. "The Scientific Method as an Ongoing Process". U C Riverside.



The Scientific Method ~ 2020’s

1 Program

while (true) {
predict();
falsify();

}

Discovery through Automation

Robot scientist becomes 
first machine to discover 
new scientific knowledge

Ross King

Garland, Jr., Theodore. "The Scientific Method as an Ongoing Process". U C Riverside.



The Inner Loop
• A model is refined by testing a (fixed) protocol against a systems
• A protocol is refined by testing a (fixed) model against a systems

• Today: publication does not accurately reflect execution

• Model: poorly-maintained matlab script
• Protocol: poorly-described manual steps in the lab
• System: poorly-characterized and hardly “resettable”

•  Crisis in biology: experiments are done once and are hard to reproduce
http://www.nature.com/news/reproducibility-1.17552

Model

Protocol

System



The Inner Loop
• Tomorrow, automation

• Model: unambiguous (mathematical) description (CompBio)
• Protocol: standardized (engineered) parts and procedures (SynthBio)
• System: characterized (biological) organism and foundries (SysBio)

• Verification: simulation / analysis / model checking / theorem proving
• Observation:  lab automation
• Falsification: statistical inference / model reduction 

• Performance evaluation/optimization: of model+protocol+system combined
• Management: version control, equipment monitoring, data storage

Model
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In this talk

via Molecular 
Programming

Chemical Reaction 
Networks

DNA Nanotechnology
Synthetic Biology



Models

(those things that know nothing about protocols)



Chemical Reaction Networks (CRN)

X + Y  ->r Z + W
 A phenomenological model of kinetics in the natural sciences

By (only) observing naturally occurring reactions

 A programming language, finitely encoded in the genome 
By which living things manage the unbounded processing of matter and information

 A mathematical structure, rediscovered in many forms
Vector Addition Systems, Petri Nets, Bounded Context-Free Languages, Population Protocols, …

 A description of mechanism (“instructions” / “interactions”) 
rather than behavior (“equations” / “approximations”)

Although the two are related in precise ways
Enabling, e.g., the study of the evolution of mechanism through unchanging behavior

12



Programming any dynamical system as a CRN
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For example, take the canonical oscillator: sine/cosine

∂s = c
∂c = -s

s⁻ -> s⁻ + c⁺ 
s⁺ -> s⁺ + c⁻
c⁺ -> c⁺ + s⁺ 
c⁻ -> c⁻ + s⁻ 

s⁺ + s⁻ -> Ø 
c⁺ + c⁻ -> Ø 

let s = (s⁺ - s⁻) 
let c = (c⁺ - c⁻)

Positivation

∂s⁺ = c⁺
∂s⁻ = c⁻
∂c⁺ = s⁻
∂c⁻ = s⁺

Linearity
∂ (s⁺ - s⁻) = (c⁺ - c⁻) 
∂ (c⁺ - c⁻) = -(s⁺ - s⁻)

Re
na

m
in

g

(Optional)

∂ s⁺ = c⁺ - s⁻ · s⁺
∂ s⁻ = c⁻ - s⁻ · s⁺
∂ c⁺ = s⁻ - c⁻ · c⁺
∂ c⁻ = s⁺ - c⁻ · c⁺

s⁺0=max(0,s0)
s⁻0= max(0,-s0)
c⁺0= max(0,c0)
c⁻0= max(0,-c0)

Hungarization DNA compilation

(1) 2 3 4 5

Molecular Dynamics

≈
≈

“elementary”

Equation of motion of 
a simple pendulum

∂2θ = -g/l sinθ
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≈
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Chemistry is (also) a formal language that we 
can use to implement any dynamical system
with real (DNA) molecules

 ANY collection of abstract chemical reactions
can be implemented with specially designed DNA 
molecules, with accurate kinetics (up to time scaling).

 Approaching a situation where we can "systematically compile" 
(synthesize) a model to DNA molecules, run an (automated) 
protocol, and observe (sequence) the results in a closed  loop.

19



A Model
A Chemical Reaction Network, provided explicitly or (in this case) generated from a 
higher-level description of the initial strands, according to the DNA strand 
displacement rules

20



Model Semantics (deterministic)

21

 ODE semantics of CRNs
State produced by a CRN                               (species      , reactions      ) 
with flux        (r.h.s. of its mass action ODEs) at time t, 
from initial state                       (initial concentrations x0, volume V, temperature T): 



Summarizing
 Our models are (chemical) programs
 We can compute their behavior (their final state)
 We can (virtually) run them by integration of the ODEs
 We can (physically) run them by DNA nanotech

22



Protocols

(those things that know nothing about models)



A Protocol
For DNA gate assembly and activation in vitro

24

Protocol steps 
(liquid handing)



Digital Microfluidics
OpenDrop
https://www.youtube.com/watch?v=ncfZWqPm7-4

25

https://www.youtube.com/watch?v=pSls9L_h3Q0
OpenDrop speed test

Purple Drop  (UW)
https://misl.cs.washington.edu/projects/fluidics.html



Digital Microfluidics

26

 A general, programmable, platform to execute the 
main liquid-handling operations

 To close the cycle, it can support many automated 
observation techniques on-board or off-board via 
peripheral pumps (sequencing, mass spec, …) 
although these are all very hardware-dependent.



A Protocol Language
Samples: containers with volume, temperature, concentrations

27



Protocol Semantics (deterministic)
Each program denotes a final state <concentrations, volume, temperature>

28

is the final state produced by a protocol        where r binds its free variables:

State produced by CRN                              with flux F at time t: 

(Equilibrate semantics)

(CRN semantics)



Kaemika Microfluidics Compiler

29

 Mix, split, equilibrate, dispose
 Automatic routing – no geometrical information
 Hot/cold zones

sample A {3μL, 20C}

split B,C,D,E = A

mix F = E,C,B,D

dispose F



Summarizing
 Our protocols are (liquid handling) programs
 We can compute their behavior (their final state)
 We can (virtually) run them (by simulation)
 We can (physically) run them (by digital microfluidics)

30



Models together with Protocols



Automating “the whole thing”
 Protocols: sets of steps to direct lab machinery (or people)

 Published in specialized journals. With varying accuracy.

 Models: sets of equations to predict the results of lab experiments
 Published in Auxiliary Online Materials. With lots of typos.

 Protocols know nothing about models
 What hypothesis is the protocol trying to test? It is not written in the protocol.

 Models know nothing about protocols
 What lab conditions are being used to test the model? It is not written in the model.

 While presumably talking about the same system
 Through the experiment.

 Reproducibility crisis
 Experiments are hard to reproduce. (materials, conditions, shortcuts)
 Even models are hard to reproduce! (typos in equations, sketchy diagrams, unexplained graphs, mysterious scripts)

 Similar to classical lifecycle problems in C.S.
 Documentation (model) gets out of step from code (protocol) if their integration is not automated.

32

Model

Protocol

System

Falsification

Verification

Observation



An Integrated Description
Samples: containers with volume, temperature, concentrations

33

+
=

each sample evolves (via Equilibrate) according to
a given overall CRN:

Protocol Model

Joint script

(species, reactions)



Program Semantics (deterministic)
Each program denotes a final state <concentrations, volume, temperature>

34

is the final state produced by a protocol        for a fixed CRN                         :

State produced by CRN                              with flux F at time t: 



A Joint Semantics
This semantics gives us a joint simulation algorithm, connecting chemical simulation with 
protocol simulation.

In this presentation everything is deterministic. The state of the protocol is passed to the 
chemical simulator, which computes a new state that it passes to the protocol simulator, and 
so on.

Kaemika uses such a joint simulation algorithm for stochastic simulation, passing also variance 
information back and forth between chemical and protocol simulation. 
This requires an extension of the above semantics using the Linear Noise Approximation of 
chemical kinetics, which computes mean and variance of concentrations (both by ODEs, not 
e.g. by Gillespie algorithm), and a similar extension of the protocol operations.



Stochastic Analysis
 We can ask: what is the probability of a certain outcome given 

uncertainties in both the protocol and the model?
 Conversely: which parameters of both the protocol and the model

best fit the observed result?
 Also, we can use Statistical Modelchecking:

36

1500 executions including protocol uncertainty due timing 
and pipetting errors (red). 
1500 executions including only model uncertainty about 
rates of the CRN (yellow). 
1500 executions including both sources of uncertainty 
(blue).

We may estimate by Statistic Model Checking, e.g. the 
probability that Output will fall in a certain range, given 
distributions over uncertain model and protocol parameters.



Simulating Reaction Networks 
together with Digital Protocols



Kaemika
 A prototype language for

chemical models & protocols

 http://lucacardelli.name/kaemika.html

 Search "Kaemika" in the App stores

38

• CRN simulation
• Microfluidics simulation
• Reaction graphs
• ODE equations
• Stochastic noise (LNA)



Main features
 Species and reactions

 Characterized by initial values and rates

 “Samples” (compartments) and Protocols
 Isolate species and reactions in a compartment, and mix compartments 

 Kinetics (simulation)
 Deterministic (ODE) or stochastic (LNA) for chemical models
 Digital microfluidics for chemical protocols

 Programming abstractions
 Assemble models and protocols as compositions of modules 

39



Species and Reactions

40

//======================================
// Lotka 1920, Volterra 1926
// (simplified with all rates = 1)
//======================================

number x1₀ <- uniform(0,1) // random x1₀
number x2₀ <- uniform(0,1) // random x2₀

species x1 @ x1₀ M      // prey
species x2 @ x2₀ M      // predator

x1 -> x1 + x1       {1} // prey reproduces
x1 + x2 -> x2 + x2  {1} // predator eats prey
x2 -> Ø             {1} // predator dies

equilibrate for 40

<= Demo: LotkaVolterra



Stochastic (LNA) simulation

41

 For all programs (any CRN, any Protocol)

∂lo1 = - hi1 · lo1 - 0.5 · hi2 · lo1 + lo1 · md + 0.5 · lo2 · md
∂hi2 = -0.5 · hi1 · hi2 - hi2 · lo2 + hi2 · md»₁ + 0.5 · lo1 · md»₁
∂lo2 = 0.5 · hi1 · md»₁ - hi2 · lo2 - 0.5 · lo1 · lo2 + lo2 · md»₁
∂hi1 = - hi1 · lo1 - 0.5 · hi1 · lo2 + hi1 · md + 0.5 · hi2 · md
∂md = 2 · hi1 · lo1 + 0.5 · hi1 · lo2 + 0.5 · hi2 · lo1 - hi1 · md - 0.5 · hi2 · md - lo1 · md - 0.5 · lo2 · md
∂md»₁ = 0.5 · hi1 · hi2 - 0.5 · hi1 · md»₁ + 2 · hi2 · lo2 + 0.5 · lo1 · lo2 - hi2 · md»₁ - 0.5 · lo1 · md»₁ - lo2 · md»₁

∂var(lo1) = - cov(hi1,lo1) · lo1 - 0.5 · cov(hi2,lo1) · lo1 - cov(lo1,hi1) · lo1 - 0.5 · cov(lo1,hi2) · lo1 + cov(lo1,md) · lo1 + hi1 · lo1 + 0.5 · hi2 · lo1 + 0.5 · cov(lo1,md) · lo2 + cov(md,lo1) · lo1 + 0.5 · 
cov(md,lo1) · lo2 + 0.5 · cov(lo1,lo2) · md + 0.5 · cov(lo2,lo1) · md + lo1 · md + 0.5 · lo2 · md - 2 · hi1 · var(lo1) - hi2 · var(lo1) + 2 · md · var(lo1)

∂cov(lo1,hi2) = cov(lo1,md»₁) · hi2 - 0.5 · cov(lo1,hi1) · hi2 - cov(hi1,hi2) · lo1 - 1.5 · cov(lo1,hi2) · hi1 - 0.5 · cov(lo1,hi2) · hi2 - cov(lo1,lo2) · hi2 + 0.5 · cov(lo1,md»₁) · lo1 + cov(md,hi2) · lo1 -
cov(lo1,hi2) · lo2 + 0.5 · cov(md,hi2) · lo2 + cov(lo1,hi2) · md + 0.5 · cov(lo2,hi2) · md + cov(lo1,hi2) · md»₁ - 0.5 · lo1 · var(hi2) + 0.5 · md»₁ · var(lo1)

∂cov(lo1,lo2) = 0.5 · cov(lo1,md»₁) · hi1 - cov(hi1,lo2) · lo1 - 0.5 · cov(hi2,lo2) · lo1 + cov(lo1,md»₁) · lo2 + cov(md,lo2) · lo1 + 0.5 · cov(md,lo2) · lo2 + 0.5 · cov(lo1,hi1) · md»₁ - 0.5 · cov(lo1,lo2) · 
lo1 - cov(lo1,hi2) · lo2 - cov(lo1,lo2) · hi1 - 1.5 · cov(lo1,lo2) · hi2 + cov(lo1,lo2) · md + cov(lo1,lo2) · md»₁ - 0.5 · lo2 · var(lo1) + 0.5 · md · var(lo2)

∂cov(lo1,hi1) = cov(lo1,md) · hi1 + 0.5 · cov(lo1,md) · hi2 - cov(lo1,hi1) · lo1 + cov(md,hi1) · lo1 - 0.5 · cov(lo1,hi1) · lo2 - 0.5 · cov(lo1,lo2) · hi1 - 0.5 · cov(hi2,hi1) · lo1 - cov(lo1,hi1) · hi1 - 0.5 · 
cov(lo1,hi1) · hi2 + 0.5 · cov(md,hi1) · lo2 + 2 · cov(lo1,hi1) · md + 0.5 · cov(lo1,hi2) · md + 0.5 · cov(lo2,hi1) · md - lo1 · var(hi1) - hi1 · var(lo1)

∂cov(lo1,md) = 2 · cov(lo1,hi1) · lo1 - cov(hi1,md) · lo1 - cov(lo1,md) · lo1 - hi1 · lo1 - 0.5 · hi2 · lo1 + 0.5 · cov(lo1,hi1) · lo2 - 0.5 · cov(lo1,md) · lo2 - cov(lo1,hi1) · md + 0.5 · cov(lo1,lo2) · hi1 - 0.5 
· cov(hi2,md) · lo1 + 0.5 · cov(lo1,hi2) · lo1 - 0.5 · cov(lo1,hi2) · md - 0.5 · cov(lo1,lo2) · md - 2 · cov(lo1,md) · hi1 - cov(lo1,md) · hi2 + cov(lo1,md) · md + 0.5 · cov(lo2,md) · md - lo1 · md - 0.5 · lo2 
· md + 2 · hi1 · var(lo1) + 0.5 · hi2 · var(lo1) + lo1 · var(md) + 0.5 · lo2 · var(md) - md · var(lo1)

∂cov(lo1,md»₁) = 0.5 · cov(lo1,hi1) · hi2 - cov(hi1,md»₁) · lo1 - 0.5 · cov(lo1,md»₁) · lo1 - cov(lo1,md»₁) · lo2 + cov(md,md»₁) · lo1 + 0.5 · cov(md,md»₁) · lo2 - 0.5 · cov(lo1,hi1) · md»₁ + 0.5 · 
cov(lo1,hi2) · hi1 + 2 · cov(lo1,lo2) · hi2 - 0.5 · cov(hi2,md»₁) · lo1 + 0.5 · cov(lo1,lo2) · lo1 + 2 · cov(lo1,hi2) · lo2 - cov(lo1,lo2) · md»₁ + 0.5 · cov(lo2,md»₁) · md - cov(lo1,hi2) · md»₁ - 1.5 · 
cov(lo1,md»₁) · hi1 - 1.5 · cov(lo1,md»₁) · hi2 + cov(lo1,md»₁) · md + 0.5 · lo2 · var(lo1) - 0.5 · md»₁ · var(lo1)

…

2AM Oscillator



Writing Models Compositionally
 Embedded chemical notation

Programs freely contain both chemical reactions and control flow
Can generate unbounded-size reaction networks

 Rich data types
numbers, species, functions, networks, lists, flows (time-courses)
flows are composable functions of time used in rates, plotting, and observation

 Modern abstractions
Functional: programs take data as parameters and produce data as results
Monadic: programs also produce effects (species, reactions, liquid handling)
Nominal: lexically scoped chemical species (species are not “strings”)

42



Ex: Predatorial

43

function Predatorial(number n) {
if n = 0 then

define species prey @ 1 M
prey -> 2 prey // prey reproduces
report prey
yield prey

else
define species predator @ 1/n M
species prey = Predatorial(n-1)
prey + predator ->{n} 2 predator // predator eats
predator -> Ø // predator dies
report predator
yield predator

end
}

species apexPredator = Predatorial(5)
equilibrate for 50

//======================================
// Creates a stack of predator-prey 
// relationships in Lotka-Volterra style,
// and returns the apex predator. 
//======================================

<= Demo: Predatorial



Describing a Protocol
 Samples (e.g., test tubes)
 Are characterized by a volume and a temperature
 Contain a specified set of species
 Evolve according to reactions that operates on those species
 Isolate species and reactions

 Protocol Operations (e.g., liquid handling)
 Accept and produce samples
 Accepted samples are used up (they can only be operated-on once)
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Samples
 Samples contain concentrations of species, acted over by reactions.
 Each sample has a fixed volume and a fixed temperature through its evolution.
 Sample concentrations are in units of molarity M = mol/L. 
 The default implicit sample is called the vessel {1 mL, 20 C}
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species {c} // a species for multiple samples

sample A {1μL, 20C}    // volume and temperature
species a @ 10mM in A // species local to A
amount c @ 1mM in A // amount of c in A
a + c -> a + a

sample B {1μL, 20C}
species b @ 10mM in B  // species local to B
amount c @ 1mM in B    // amount of c in B
b + c -> c + c

An amount can also be given in
grams (if molar mass is specified).
The resulting concentration is then
relative to sample volume.

species {NaCl#58.44}

sample C {1mL, 20C}
amount NaCl @ 8g in C

Reactions can be specified with 
Arrhenius parameters {collision 
frequency, activation energy}.
The reaction kinetics is then 
relative to sample temperature T. 

a + c ->{2, 5} a + a 
// rate is 2*e^(-5/(R*T))

<= Demo: MixAndSplit



Ex: Serial Dilution (recursive protocol)
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network SerialDilution(number count, sample s, network f) {
if count > 0 then

sample solvent {9*observe(volume,s) L, observe(kelvin,s) K}
mix s = s, solvent
split s, dilution = s by 0.1, 0.9
f(dilution)
SerialDilution(count-1, s, f)

end
}

//initial sample to be diluted:

sample init {1mL, 25C}          
species A @ 1M in init
species B @ 1M in init
A + B ->{20} A
A -> Ø

//apply this network to each dilution;
//note that this invokes a simulation
//each time in each solution

network test(sample s) {        
equilibrate s for 10
dispose s

}

//dilute 4 times

SerialDilution(4, init, test) 

Prepare a series of increasingly 
diluted solutions and apply a 
network f to each (f can add 
species and reactions to the 
solutions)

RESULT:
sample init {1mL, 298.2K} {A = 1M, B = 1M}
sample s2 {1mL, 298.2K} {A = 100mM, B = 100mM}
sample s4 {1mL, 298.2K} {A = 10mM, B = 10mM}
sample s7 {1mL, 298.2K} {A = 1mM, B = 1mM}
sample s10 {1mL, 298.2K} {A = 100uM, B = 100uM}



Digital Microfluidics Compiler
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 Mix, split, equilibrate, dispose
 Automatic routing – no geometrical information
 Hot/cold zones

sample A {3μL, 20C}

split B,C,D,E = A

mix F = E,C,B,D

dispose F

<= Demo: MixAndSplit



Extracting the Model and the Protocol
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species {c}

sample A 
species a @ 1M in A
amount c @ 0.1M in A
a + c -> a + a
equilibrate A1 = A for 1

sample B
species b @ 1M in B
amount c @ 0.1M in B
b + c -> c + c
equilibrate B1 = B for 1

split C,D = A1 by 0.5
dispose C

mix E = D with B1
a + b -> b + b

equilibrate F = E for 20
dispose F

From the script The protocol The (final) model (sample E)



Extracting  the Hybrid Transition System
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species {c}

sample A 
species a @ 1M in A
amount c @ 0.1M in A
a + c -> a + a
equilibrate A1 = A for 1

sample B
species b @ 1M in B
amount c @ 0.1M in B
b + c -> c + c
equilibrate B1 = B for 1

split C,D = A1 by 0.5
dispose C

mix E = D with B1
a + b -> b + b

equilibrate F = E for 20
dispose F

The full story (Hybrid system)From the script



Kaemika: Extra features



Extra features
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 General kinetic rates 
 Fractions, rational powers, exponentials, trigonometry. E.g., x -> y {{ 1/x }}
 Work with both deterministic and stochastic simulation and equation-extraction
 Even triggers (discontinuous waveforms)

 Direct ODE notation
 Instead of a reaction, just write an ODE like  ∂x = s · y - s · x
 This is translated to the reaction Ø -> x {{s · y - s · x}} using general kinetic rates

 Timeflows (trajectories as first-class values)
 Programmable plot reports (e.g., var(2 · a - 3 · b))
 Capture timeflow outputs to combine (e.g., avg) and re-plot/export them later

 Mass action compiler
 Turn any elementary ODE system (with fractions, rational powers, exponentials, trigonometry) into an equivalent system of 

pure mass action reactions.

 Programmable random numbers and distributions
 As in MIT’s Omega probabilistic language, with rejection sampling.

 Export
 SBML, ODE, Bitmap, SVG, GraphViz



Reaction scores (graphical representation of reaction networks)
Horizonal lines: species. Vertical stripes: reactions.         Blue: reagents. Red: products. Green: catalysts.

Reactants and products Repeated species Reactants but no products Products but no reactants

Catalyst Catalyst but no reactants Catalyst but no products Autocatalyst



Reaction Scores vs. Reaction Graphs
 2AM Oscillator
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GraphViz

<= Demo: 2AM Oscillator



Mass Action Compiler
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 Lorenz chaotic attractor

∂x = s · y - s · x
∂y = r · x - x · z - y
∂z = x · y - b · z

s = 10
b = 8/3
r = 28
x₀ = 1
y₀ = 0
z₀ = 28

x⁺ + x⁻ -> Ø 
y⁺ -> y⁺ + x⁺ {10}
x⁻ -> x⁻ + x⁺ {10}
y⁻ -> y⁻ + x⁻ {10}
x⁺ -> x⁺ + x⁻ {10}
y⁺ + y⁻ -> Ø 
z⁺ + x⁻ -> z⁺ + x⁻ + y⁺ 
z⁻ + x⁺ -> z⁻ + x⁺ + y⁺ 
x⁺ -> x⁺ + y⁺ {28}
y⁻ -> y⁻ + y⁺ 
z⁻ + x⁻ -> z⁻ + x⁻ + y⁻ 
z⁺ + x⁺ -> z⁺ + x⁺ + y⁻ 
x⁻ -> x⁻ + y⁻ {28}
y⁺ -> y⁺ + y⁻ 
z⁺ + z⁻ -> Ø 
y⁻ + x⁻ -> y⁻ + x⁻ + z⁺ 
y⁺ + x⁺ -> y⁺ + x⁺ + z⁺ 
z⁻ -> z⁻ + z⁺ {2.667}
y⁺ + x⁻ -> y⁺ + x⁻ + z⁻ 
y⁻ + x⁺ -> y⁻ + x⁺ + z⁻ 
z⁺ -> z⁺ + z⁻ {2.667}

Initial:
x⁺ =1
x⁻ = 0
y⁺ = 0
y⁻ = 0
z⁺ = 28
z⁻ = 0

not mass action

<= Demo: LorenzAttractor



Global Sensitivity Analysis (of a Lotka-Volterra system)

function f(number r1 r2 r3) {
define
sample S
species x1 @ 0.66 M in S
species x2 @ 0.44 M in S
x1 -> x1 + x1            {r1}
x1 + x2 -> x2 + x2    {r2}
x2 -> Ø                     {r3}
equilibrate S for 2.5

yield [observe(x1,S), observe(x2,S)]
}

random X(omega w) { 
f(1+(w(0)-0.5)/10, 1+(w(1)-0.5)/10, 1+(w(2)-0.5)/10)

}

draw 2000 from X

<- A function f to run one simulation (ri are the input parameters to be perturbed)
<- define D yield E returns the value of E after executing the statements D
<- Make a new sample S to contain species and reactions for simulation
<- Lotka-Volterra prey species x1 (initial conditions could be a parameter as well)
<- Lotka-Volterra predator species x2
<- Prey reproduces, with perturbed rate r1
<- Predator eats prey, with perturbed rate r2
<- Predator dies, with perturbed rate r3
<- Simulate the system up to time 2.5 (first peak of the oscillation)
<- Return the output concentrations of x1,x2 from S at time 2.5 as pairs

<- Create a bivariate random variable X over uniform[0..1) sample spaces w(i)
<- producing random instances f(1+e1, 1+e2, 1+e3) = [x1,x2]e1,e2,e3,t=2.5

with e1, e2, e3 being 10% independent perturbations of the parameters

<- Produce a density plot of 2000 instances drawn from X
i.e. a plot of the distributions of X[0]=x1 and X[1]=x2 at time 2.5
vertical bars are mean and standard deviation

N.B., consider also exporting your Kaemika model to SBML and 
use the Sobol’ method of global sensitivity analysis in e.g. Copasi.

Advanced Scripting

x1 sensitivity to random
<10% parameter 
variations at time 2.5



Conclusions
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Experimental biological protocols with formal semantics
Alessandro Abate, Luca Cardelli, Marta Kwiatkowska, 
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Kaemika app - Integrating protocols and chemical simulation
Luca Cardelli. CMSB 2020.

Kaemika User Manual
http://lucacardelli.name/Papers/Kaemika%20User%20Manual.pdf

Integrated modeling
Of chemical reaction networks and protocols
How the Kaemika app supports it
Why it needs a new language for smooth integration

Closed-loop modeling, experimentation and analysis
For complete lab automation
To “scale up” the scientific method
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App store reviewers
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